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Several recent exact-diagonalization calculations have established that the Anderson-Hubbard model has a
disorder-induced zero bias anomaly �ZBA� �also called a disorder-induced pseudogap� in the density of states.
In order to understand the physics of the ZBA, we study a simplified problem—an ensemble of two-site
molecules with random site energies—for which analytical results are possible. For this ensemble, we examine
how the ZBA forms in both the weakly correlated �mean field� and strongly correlated limits. In the weakly
correlated case, the ZBA can be understood as the result of level repulsion between bonding and antibonding
molecular orbitals. A similar level repulsion occurs in the strongly correlated case too but a larger contribution
to the ZBA comes from the suppression of a triplet excitation mode. This inherently many-body mechanism
does not have a counterpart in mean-field models.
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I. INTRODUCTION

A number of recent papers have shown the existence of a
disorder-induced zero bias anomaly �ZBA� in the Anderson-
Hubbard model �AHM� in one and two dimensions.1–5 These
calculations have revealed that there is a V-shaped dip in the
density of states at the Fermi energy �F. This dip is produced
by the response of the inelastic self-energy to the disorder
potential.1,5 Such a mechanism is well understood in conven-
tional metals and insulators, where the effect was explained
at the level of Hartree-Fock theory by Altshuler and Aronov.6

However, strong correlation effects are generally important
in the AHM, and the Altshuler-Aronov mechanism is thus
insufficient for this case.5

The AHM is the standard model for strongly correlated
systems with disorder. Like the Hubbard model, electrons are
assumed to move on a tight-binding lattice of atomiclike
orbitals. A zero-range intraorbital Coulomb interaction U is
included but longer-range interorbital interactions are ne-
glected. Strong correlations are important when the intersite
hopping matrix element t is small relative to U. The AHM
differs from the Hubbard model by the addition of disorder,
which is introduced by selecting the orbital energies �i from
a random distribution of width � �the subscript i labels sites
in the atomic lattice�. The Hamiltonian is

H = − t �
�ij�,�

ci�
† cj� + �

i

��in̂i + Un̂i↑n̂i↓� , �1�

where �ij� restricts the sum to nearest-neighbor sites, n̂i� is
the number operator for site i and spin �, n̂i=��n̂i�, and �i

� �− 1
2� , 1

2��. �We use Ô to indicate the operator form of an
observable O; thus ni= �n̂i�.� In this model, the ensemble-
averaged density is n=1 �i.e., the band is half filled� for �F

= U
2 .
The conventional Altshuler-Aronov theory predicts that

the Hartree and exchange self-energies make positive and
negative contributions to the density of states at �F,

respectively.6 The exchange self-energy is typically much
larger than the Hartree self-energy, and the net result is a
depletion of states at �F. However, the AHM has a zero-
range interaction for which the exchange self-energy van-
ishes. Altshuler-Aronov theory predicts a peak in this case,
which is illustrated by the nonmagnetic Hartree-Fock calcu-
lations in Fig. 1. This is in contrast to the V-shaped dip found
in exact-diagonalization calculations.2–4 The Altshuler-
Aronov prediction assumes a nonmagnetic ground state, and
a number of unrestricted Hartree-Fock calculations have
found a V-shaped dip at �F �Refs. 7–10� in the magnetic
phase.9 While the unrestricted Hartree-Fock results are quali-
tatively similar to the exact-diagonalization results, there are
some important differences. Notably, the ZBA in the unre-
stricted Hartree-Fock calculations grows with increasing U,
eventually forming a broad soft gap when U is sufficiently
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FIG. 1. �Color online� Comparison of densities of states for the
Anderson- Hubbard model using different approximations. Results
are shown for the nonmagnetic Hartree-Fock �NMHF�, unrestricted
Hartree-Fock �UHF�, and exact diagonalization �ED� of small clus-
ters. Hartree-Fock calculations are ensemble-averaged self-
consistent calculations for 10�10 lattices and 1000 impurity con-
figurations. Exact diagonalization calculations are for a 12-site
lattice and 1000 impurity configurations. Model parameters are �
=20, U=8, t=1, and �F=U /2, corresponding to half filling.
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large. In contrast, the ZBA in exact-diagonalization calcula-
tions saturates for large U �provided U��; a Mott gap
opens for U	��, and empirically has a width �t.2,5 Densi-
ties of states based on the different approximations are illus-
trated in Fig. 1.

We note that the above discussion ignores the low-energy
soft gap3,4,10 that has been inferred from exact diagonaliza-
tion in one dimension, and found in unrestricted Hartree-
Fock calculations in one and three dimensions. This gap ap-
pears on a scale 	
−�F	�O�0.1t�, and has been ascribed to
long-range correlations.3,4 The current work examines the
two-site AHM where long range correlations are absent, and
there is no soft gap.

The advantage of the two-site AHM is that it is simple
enough that analytical results are possible, and yet is suffi-
ciently rich to explain much of the physics of the ZBA in
larger systems.11 Here, our goal is to compare the two-site
AHM to a simple mean-field two-site model in order to an-
swer the question: in what way is the ZBA in strongly cor-
related systems different from that in conventional metals?

Our main results are summarized in Fig. 2. In Fig. 2�a�,
we plot the low-energy excitation spectrum for a pair of sites
with energies �1=�2 using the mean-field model described in
Sec. II. This model is meant to illustrate the conventional
Altshuler-Aronov mechanism for the ZBA. Without interac-
tions, the hybridization of atomic orbitals leads to a level
splitting of 2t between bonding and antibonding orbitals.
With interactions, there is a range of site energies near �F
where the level splitting is larger than 2t. This enhancement
of level splitting �i.e., this level repulsion� shifts spectral
weight away from �F and is the origin of the ZBA in this
model. In Fig. 2�b�, an alternative mechanism for shifting
spectral weight away from �F is presented. In this case, exact
results for the low-energy excitation spectrum of the two-site
AHM are shown. We have taken �1=�2+U, which means
that the lower Hubbard orbital of site 1 is degenerate with the
upper Hubbard orbital of site 2. Here, the spectrum has three
excitation poles, the middle of which is a triplet excitation.

The gap which is evident in the triplet spectrum is one of the
main reasons for the pronounced ZBA in the two-site AHM,
and is an inherently many-body mechanism that lies outside
the mean-field Altshuler-Aronov paradigm. Finally, in Fig.
2�c�, we show that interactions have little effect on the spec-
trum if we consider the case of degenerate orbitals �1=�2. In
this case, excitation spectra are shifted by �O�t2 /U� from
their noninteracting values.

The goal of this paper is to explore the physics behind
these results. We discuss the mean-field mechanism for the
ZBA in Sec. II, and emphasize in particular the role of level
repulsion. We then derive, in Sec. III, an expression for the
ensemble-averaged density of states for the two-site AHM.
Finally, we discuss in Sec. IV the different mechanisms by
which the ZBA found in Sec. III arises.

II. ZBA IN MEAN-FIELD THEORY

It is worth reviewing briefly how the ZBA arises in con-
ventional metals. A variety of physical explanations for the
Altshuler-Aronov ZBA have been given,6,12,13 and in this
work we adopt the language of level repulsion.14

We consider an ensemble of two-site AHMs with ran-
domly chosen site energies. Since we restrict ourselves to
nonmagnetic solutions of the Hartree-Fock equations, a
V-shaped ZBA is possible only if a nonlocal interaction is
included. We therefore add a repulsive interaction Vn̂1n̂2 to
the Hamiltonian. In Hartree-Fock theory,

Vn̂1n̂2 → V�n1n̂2 + n2n̂1� − V�
�

��c1�
† c2��c2�

† c1� + H.c.� .

�2�

The first and second terms are the Hartree and exchange
contributions, respectively, and there is an additional Hartree
contribution 1

2U�inin̂i from the on-site interaction. The Har-
tree contribution to the density of states is small for weak
disorder6 but is central to the physics of the Coulomb gap for
large disorder; the exchange contribution is largest for weak
disorder, and underlies the Altshuler-Aronov mechanism for
the ZBA. Because our goal is to contrast the Altshuler-
Aronov mechanism with the physics of the AHM, we discuss
only the exchange term.

Neglecting the Hartree contributions, we obtain the mean-
field exchange Hamiltonian

HX = �
i

�in̂i − t̃�
�

�c1�
† c2� + c2�

† c1�� , �3�

where the renormalized hopping matrix element is t̃= t
+V�c1�

† c2��. The eigenergies of HX are

EX,� =
�1 + �2

2
�
� �1 − �2

2
�2

+ t̃2, �4�

and a straightforward calculation yields

�c1�
† c2�� = − t̃

f�EX,+� − f�EX,−�
EX,+ − EX,−

. �5�

Equations �4� and �5� allow t̃ to be determined self-
consistently for each ��1 ,�2� pair. The ensemble-averaged

-2 -1 0 1 2
ε1 − ε

F

-2
-1

0
1

-2
-1
0
1

ω
−

ε F

-2
-1
0
1
2

(a)

(b)

(c)

FIG. 2. �Color online� Low-energy excitation spectra as a func-
tion of site energy for the degenerate two-site model. Lines repre-
sent peak position 
 in the tunneling density of states, plotted as a
function of �1 for t=0.5. �a� Excitation spectrum for the mean-field
Hamiltonian �3� with V=0.5 and �2=�1; �b� Excitation spectrum for
exact-diagonalization calculations with �2=�1−U and �c� �2=�1.
Both �b� and �c� have U=12.
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density of states for this model exhibits a ZBA, as shown in
Fig. 3.

The term “level repulsion” refers to the fact that the level
spacing between molecular eigenenergies is greater than the
level spacing between the original atomic energies, namely,
EX,+−EX,− 	�1−�2	. For a repulsive interaction V, t̃ t and
the level repulsion is enhanced by the exchange self-energy.
This enhanced level repulsion, by itself, does not lead to a
dip in the density of states; it is necessary that the amount of
level repulsion depend on the values of EX,� relative to �F.
At zero temperature, Eq. �5� shows that t̃ is different from t
only if EX,+�FEX,−, as illustrated schematically in Fig. 3.
This has the effect of pushing states away from �F, as shown
numerically for the case �1=�2 in Fig. 2�a�. In this language,
the ZBA in conventional metals is understood as level repul-
sion between filled and empty molecular orbitals near �F.

III. APPROXIMATE DIAGONALIZATION OF THE
TWO-SITE AHM

We now turn to an approximate solution of the two-site
AHM that preserves strong-correlation physics. We work in
the strongly correlated limit U� t, where we can isolate
terms that contribute to the density of states on the energy
scale t. Higher-order terms, which contribute on the scale
t2 /U, are neglected. We begin with a brief review of the
atomic limit �t=0�, where interactions already have a non-
trivial effect on the density of states, and then show how the
density of states is modified by a nonzero t.

A. Atomic limit

The density of states can be found exactly in the atomic
limit t=0. Each site is independent, and the ground state 	Gi�
for the ith site is

	Gi� = 	0� , �F � �i

	↑� , �F − U � �i � �F

	2� , �i � �F − U .
� �6�

We have assumed a weak Zeeman splitting so that spin-up
states are preferred when there is an odd number of elec-

trons. The spin-averaged retarded Green’s function for the ith
site is

Gi�
� =
1

2�
m�
� 	�m	ci�	Gi�	2


+ − EGi
+ Em

+
	�m	ci�

† 	Gi�	2


+ + EGi
− Em

�
=

1 − ni/2

+ − �i

+
ni/2


+ − �i − U
, �7�

where 
+=
+ i0, ni=���n̂i��, 	m� are a complete set of ex-
cited states with energies Em, and EGi

is the ground-state
energy. The spin-averaged density of states at site i is thus

��i
�
� = −

1

�
Im Gi�
� �8�

=�1 −
ni

2
���
 − �i� +

ni

2
��
 − �i − U� . �9�

This equation shows that �i� strong correlations split the local
spectrum at each site into a pair of poles at �i and �i+U and
�ii� the weight of each pole depends on the electron density
at that site. We refer to the poles at �i and �i+U as the lower
Hubbard orbitals �LHO� and upper Hubbard orbitals �UHO�,
respectively. It is worth emphasizing that the energies of the
LHO and UHO determine the total charge density at each
site. From Eq. �6�,

ni = 0, �F � �i�LHO and UHO above �F�
1, �i � �F � �i + U�LHO below;UHO above�
2, �i + U � �F�LHO and UHO below �F� .

�
�10�

At half filling ��F=U /2�, the ensemble-averaged density of
states is

��
� =
1

�
�

−�/2

�/2

d����
� =
1

�
���
 − U +

1

2
����1

2
� − 
�

+
1

2
��
 +

1

2
U���3

2
U − 
�� , �11�

where ��x� is the step function. The result �11� is illustrated
in Fig. 4. This figure explicitly shows the spectral weight
contributed by the LHO and UHO in their different filling
states. For this work, the most important aspects of the figure
are �i� that both LHO and UHO contribute spectral weight at
�F for �F� �U− 1

2� , 1
2��, and �ii� that for this range of �F

there is a “central plateau” where interactions enhance ���F�
relative to the noninteracting value �−1.

B. Two-site case

1. Preliminary discussion

The results of exact numerical calculations of the density
of states are shown in Fig. 5 for two cases: U�� and U
�. We track the evolution of the density of states as a
function of �F in both cases. When U��, there is a broad
ZBA centered at �F for �F=3 and �F=5. However, the ZBA
is unresolvable when �F is outside the central plateau. When
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FIG. 3. �Color online� Zero bias anomaly for self-consistent
solutions of the mean-field Hamiltonian �3�. �a� The density of
states for t=1 and different � and V. �b� The exchange self-energy
is nonzero for configurations of �1 and �2 for which E+�FE−.
This leads to an enhanced level repulsion relative to configurations,
as in �c� where E+ and E− are on the same side of �F and the
exchange self-energy vanishes.
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U�, there is a Mott gap at half filling, and a ZBA forms as
one dopes away from half filling. This ZBA is qualitatively
different from that found near half filling for U�� and has a
width of order t2 /U. In this section, we focus on the large
ZBA that appears near half filling for U��.

The approach we take is to calculate the density of states
��1,�2

�
� for a single two-site AHM with site energies �1 and
�2. The density of states is then averaged over all possible
configurations,

��
� = �
−�/2

�/2

d�1�
−�/2

�/2

d�2��1,�2
�
� . �12�

To simplify the analytic calculations, it is useful to partition
the integration range �− 1

2� , 1
2�� into subranges A= �− 1

2� ,0�
and B= �0, 1

2��, as illustrated in Fig. 6. Sites whose UHO lies
near �F belong to region A while sites whose LHO lies near

�F belong to region B. We have argued5,11 that the ZBA
comes from level repulsion between LHO and UHO on
neighboring sites, and it is indeed suggested by Figs. 2�b�
and 2�c� that the important configurations have �1�A, �2
�B or �1�B, �2�A. The simplest approximation is to treat
these configurations carefully while treating the other con-
figurations in the atomic limit. As we show, this turns out to
be sufficient to understand the essential physics of the ZBA.

We denote by �XY�
� the density of states ensemble av-
eraged over sites with �1�X and �2�Y,

�XY�
� = Im�
X

d�1�
Y

d�2��1,�2
�
� . �13�

�AA�
� and �BB�
� are evaluated in the atomic limit, using
Eq. �9�,

�AA+BB�
� � �AA�
� + �BB�
�

=
1

2�
���1

2
� − 
���
 − U +

1

2
��

+
1

2
��U − 	
 − �F	�� . �14�

For 
 and �F near U /2 �half filling�, �AA+BB�
�= 3
4�−1. Us-

ing �BA�
�=�AB�
�, the total density of states is

��
� �
3

4�
+ 2�BA�
� . �15�

A more careful derivation of �AA+BB�
� finds corrections to
the atomic limit approximation on the energy scale 	
−�F	
�O�t2 /U�.

The next step is to evaluate
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FIG. 4. Density of states in the atomic limit. The figure shows
different contributions to the ensemble-averaged density of states in
the limit t=0 for U=12 and �=20. The spectral weights contributed
by lower Hubbard orbitals �LHO� and upper Hubbard orbitals
�UHO� in their different filling states are shown. For comparison,
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FIG. 6. �Color online� Phase diagram of the two-site AHM. �a�
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and B. �b� Integration region BA for �F= 1
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�BA�
� = −
1

��2�
B

d�1�
A

d�2 Im G�1,�2
�
�

with G�1,�2
�
� the retarded Green’s function averaged over

sites and spins. It will be convenient to change integration
variables to

x =
�2 + U + �1

2
− �F, �16a�

y =
�2 + U − �1

2
, �16b�

and write

�BA = −
2

��2�
−�

�

dy�
−xy−�

xy−�

dx Im Gx,y�
� , �17�

where the factor of 2 is the Jacobian for the transformation,
and the integration limits are

xy =
� + �

2
− �y −

� − �

2
� �18�

and

� �
� − U

2
; � =

U

2
. �19�

The Fermi energy is written as

�F =
U

2
+ � . �20�

This equation defines � such that half filling corresponds to
�=0. Figure 6 illustrates the integration region and gives the
graphical meaning of �, �, and �.

The phase diagram Fig. 6 shows that there are three filling
states in BA, with N=1, 2, or 3 electrons. We now find the
ground-state wave functions, energies, and phase boundaries
for the different filling states.

2. Ground states in region BA

We will determine the ground-state wave function in the
region BA using a truncated basis set that discards high-
energy states. These high-energy states modify the ground-
state wave functions and energies by O�t2 /U�, and our ap-
proximation is consequently valid for U� t.

In BA, the one-electron ground state in the atomic limit is
	0↑� because �1�2. Making t nonzero mixes in a small
amount of 	↑0�, proportional to t2 / ��1−�2�. However, in BA,
�1��2+U so the mixing is of order t2 /U and is neglected in
our approximation. The one-electron ground state is thus

	G1� � 	0↑� . �21�

Similarly, the three-electron ground state is 	G3��	↑2�.
The two-electron ground state is found by diagonalizing

the AHM Hamiltonian in the reduced basis �	s� , 	02��, where

	s� =
1

2

�	↑↓� − 	↓↑�� �22�

is the singlet state. For �1��2+U��F, each of these basis
states has an energy �2�F−U. The discarded basis state 	20�
has an energy �2�F+U, and the amount of 	20� mixed into
the ground state by t is therefore �O�t2 /U�, which we ig-
nore. The Hamiltonian matrix in the reduced basis is

H = ��1 + �2 − 
2t

− 
2t 2�2 + U
� �23�

which has eigenenergies

E� =
�1 + 3�2 + U

2
�
� �2 + U − �1

2
�2

+ 2t2 �24�

and eigenstates

	 � � = �1�	s� + �2�	02� , �25�

�1�
2 =


y2 + 2t2 � y

2
y2 + 2t2
; �2�

2 = 1 − �1�
2 , �26�

where y is defined in Eq. �16�. The two-electron ground state
is 	G2�= 	−�. The different ground states, their energies, and
the phase boundaries between them are tabulated in Table I.
The next step is to calculate the density of states for each
filling state.

3. Density of states for the three-electron ground state

First, we calculate the contribution to the density of states
from the three-electron ground state. Throughout this work,
we keep only terms with poles near �F, meaning that terms
with poles near �1+U or �2 are discarded. The spin- and
site-averaged Green’s function is then

G�1,�2

3e �
� �
1

4��
�

	� � 	c1↑	↑2�	2 + 	� � 	c2↑	↑2�	2


+ − ��1 + 2�2 + U� + E�

+
	�t	c2↑	↑2�	2 + 	�↑↑	c2↓	↑2�	2


+ − ��1 + 2�2 + U� + ��1 + �2�� , �27�

where

	t� =
1

2

�	↑↓� + 	↓↑�� �28�

is a triplet state. Using �2�
2 =1−�1�

2 , we reduce Eq. �27� to

TABLE I. Approximate N-electron ground states 	GN� and their
energies EG for the two-site model with �U� t in the region BA.
Variables x and y are defined in Eq. �16�, and E− is defined in Eq.
�24�.

N EG−�FN 	GN� Ground state when

1 �2−�F 	0↑� x
y2+2t2

2 E−−2�F �1−	s�+�2−	02� 	x	�
y2+2t2

3 �1+2�2+U−3�F 	↑2� x�−
y2+2t2
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G�1,�2

3e �
� =
1

4�
�

1 − �1�
2 /2


̃+ − x � 
y2 + 2t2
+

3

8

1


̃+ − x − y
,

�29�

where x and y are defined in Eq. �16� and 
̃=
−�F.
The ground state has three electrons for

− xy − � � x � − 
y2 + 2t2, �30�

where the upper limit is the phase boundary between two-
and three-electron states �cf. Table I�, and the lower limit �cf.
Eq. �18�� is the boundary of region BA. Then

�BA
3e =

1

2�2�
−��+��/2

��+��/2

dy�
−xy−�

−
y2+2t2

dx

���1 − �1+
2 /2���
̃ − x + 
y2 + 2t2�

+ �1 − �1−
2 /2���
̃ − x − 
y2 + 2t2� +

3

2
��
̃ − x − y�� .

�31�

The integration over x is straightforward because of the delta
functions, which introduce the constraints 
̃�0 and

	y	 �
	
̃	
2

Re
1 −
8t2


̃2 , first term,

−
� + � − 	
̃	

2
� y �

� + � − 	
̃	
2

, second term,

− � 	
̃	
2

−
t2

	
̃	
� � y �

� + � − 	
̃	
2

, third term.

The result for the first term is valid for 0
̃−�−�, i.e.,
for 
��F and in the central plateau. In deriving these re-
sults, we have neglected terms of order t2 /� and t2 /�. We
now integrate over y using

� dy�1 −
�1�

2

2
� =

1

4
�3y � 
y2 + 2t2� , �32�

to get the three electron contribution to the density of states,

�BA
3e �
̃� =

3��− 
̃�
8�2 �2� + �

3
+ � − 	
̃	�1 − Re 
1 −

8t2


̃2 �
+ ��− 
̃ −

2t2

� + �
��� + � −

2t2

	
̃	
�� . �33�

To simplify the final expression, we have taken 
�2+2t2

�� and 
�2+2t2��.

4. Density of states for the one-electron ground state

The derivation of the one-electron contribution to the den-
sity of states parallels that of the three-electron contribution.
The Green’s function is

G�1,�2

1e �
� �
1

4��
�

	� � 	c1↓
† 	0↑�	2 + 	� � 	c2↓

† 	0↑�	2


+ + �2 − E�

+
	�t	c1↓

† 	0↑�	2 + 	�↑↑	c1↑
† 	0↑�	2


+ + �2 − ��1 + �2� �
=

1

4�
�

1 − �1�
2 /2


̃+ − x � 
y2 + 2t2
+

3

8

1


̃+ − x + y
.

�34�

The integration region is xy −�x
y2+2t2 with xy given
by Eq. �18� and

�BA
1e =

1

2�2�
−��−��/2

��−��/2

dy�
y2+2t2

xy−�

dx

���1 − �1+
2 /2���
̃ − x − 
y2 + 2t2�

+ �1 − �1−
2 /2���
̃ − x + 
y2 + 2t2� +

3

2
��
̃ − x + y�� .

Letting x→−x, this is the same as �BA
3e �−
̃� for �→−�. Thus

�BA
1e �
̃� =

3��
̃�
8�2 �2� + �

3
− � − 
̃�1 − Re 
1 −

8t2


̃2 �
+ ��
̃ −

2t2

� − �
��� − � −

2t2


̃
�� . �35�

5. Density of states for the two-electron ground state

Finally, the Green’s function for the two-electron ground
state is

G�1,�2

2e �
1

2
� 	�0↓	c1↑	G2�	2 + 	�0↓	c2↑	G2�	2


+ − E− + �2

+
	�↑2	c1↑

† 	G2�	2 + 	�↑2	c2↑
† 	G2�	2


+ + E− − ��1 + 2�2 + U� � �36�

=
1

2�
�

1 − �1−
2 /2


̃+ − x � 
y2 + 2t2
�37�

Then,

�BA
2e =

1

�2�
−�+	�	

�−	�	

dy�
x1

x2

dx�1 −
�1−

2

2
�

��
�

��
̃ − x � 
y2 + 2t2� , �38�

where x1=−min�xy +� ,
y2+2t2�, x2=min�xy −� ,
y2+2t2�.
Performing the integrations over x and y gives

�BA
2e �
̃� =

3

4�2�2� + �

3
+ 	
̃	�1 − Re 
1 −

8t2


̃2 ��
+

3�

4�2 ���
̃� − ��− 
̃�� . �39�
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6. Total density of states

Putting the results of the different calculations together,
we arrive at our final result for the total density of states
�valid in the central plateau�,

��
� = �AA+BB�
� + 2�BA
1e �
� + 2�BA

2e �
� + 2�BA
3e �
�

=
3

2�
+

3

2�2�−
U

4
+

�s

2
+

	
̃	
2
�1 − Re 
1 −

8t2


̃2 �
+ ��	
̃	 −

4t2

U − 2�s
��U − 2�s

4
−

t2

	
̃	
�� , �40�

where �s=� sgn�
̃� and 
̃=
−�F. The parameters �, �, and
� are defined in Eqs. �19� and �20�.

As a check of Eq. �40�, we let t→0, in which case

��
� →
3

2�

which agrees with the previous atomic limit calculation for
the central plateau. Equation �40� is plotted in Fig. 7 in com-
parison with the exact density of states determined from nu-
merically diagonalizing the AHM.

IV. DISCUSSION

Figure 7 compares Eq. �40� to exact disorder-averaged
numerical calculations for the density of states. The theory
works well for 	
̃	4t2 /U, out to the edges of the central
plateau where it breaks down �for example, near 
̃= �4 in
Fig. 7�a��. The theory neglects terms of order t2 /U, and
therefore fits the numerics better when t is smaller, as shown
in Figs. 7�c� and 7�d�. The fit for 	
̃	�4t2 /U is not especially
good but can be improved significantly by considering cor-
rections of order t2 /U that were neglected in the previous
section; we have not included these corrections because they
complicate ��E� significantly without adding physical in-
sight. The focus of this discussion is therefore 	
̃	4t2 /U.

The main qualitative idea that we emphasize in this sec-
tion is that there are two distinct physical mechanisms that
lead to the ZBA in Eq. �40�. Both mechanisms occur for
configurations where the LHO of one site and the UHO of
the other site are nearly degenerate with �F, namely, for �1
��2+U��F or �2��1+U��F. The first mechanism is simi-
lar to that outlined in the mean-field calculation in Sec. II:
level repulsion, caused by hybridization of many-body states,
shifts states away from �F. The second mechanism does not
have a mean-field counterpart: level repulsion gaps the spec-
trum of low-energy triplet excitations.

The first mechanism underlies the second last term in Eq.
�40�,

3	
̃	
4�2 �1 − Re 
1 −

8t2


̃2 � . �41�

This term rises linearly from 
̃=0 and is peaked at 
̃
= �2
2t, which defines the width of the ZBA in Fig. 7. In
our calculations, this term comes from transitions between
two-electron singlet states and states with one or three elec-
trons, and it is the level repulsion between the two-electron
states that causes the ZBA. In the case, for example, where
�1 and �2+U lie near �F, there are two nearly-degenerate
two-electron singlets, 	s� and 	02�; these hybridize as a result
of the matrix element t to form bonding and antibonding
many-body states with energies �from Eq. �24��,

E� � 2�F − U � 
2t . �42�

Thus, the level repulsion between 	s� and 	02� shifts the
many-body orbital energies up or down by O�t�. Starting
from the two-electron ground state, with energy E−, one has
transitions

�1−	s� + �2−	02� →
c1�

† ,c2�
†

	�2� ,

�1−	s� + �2−	02� →
c1�,c2�

	0�̄� . �43�

We showed in Sec. III B that the three-electron energy is
�1+2�2+U �which is approximately 3�F−U�, and the one-
electron energy is �2 �approximately �F−U� so that the tran-
sition energies in Eq. �43� are


� � �F � 
2t . �44�

Because 
� are shifted by O�t� away from �F, the density of
states at �F is reduced as t increases. As indicated above, this
mechanism for depleting the low-energy density of states is
similar to the mean-field mechanism discussed in Sec. II,
where level repulsion between molecular states on opposite
sides of �F increases the energy required to add or remove an
electron. In this sense, the second-last term in Eq. �40� is
Altshuler-Aronov-like.

The second mechanism does not have a mean-field coun-
terpart, and results in the last term in Eq. �40�,

1

1.5

2

ρ(
ω

)
[∆

−1
]

-4 -2 0 2 4
ω−ε

F

1

1.5

2

ρ(
ω

)
[∆

−1
]

-4 -2 0 2 4
ω−ε

F

(a) (b)

(c) (d)

δ=0, t=1 δ=1.5, t=1

δ=0, t=0.5 δ=1.5, t=0.5

FIG. 7. �Color online� Density of states for the two-site
ensemble-averaged Anderson-Hubbard model for different values
of t and �. Results are shown for exact numerical solution of the
AHM �dashed black curves� and for the approximate result, Eq.
�40� �solid red curves�. Model parameters are U=12 and �=20.
Recall that �F=U /2+� and that �=0 corresponds to half filling.
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3

2�2��	
̃	 −
4t2

U − 2�s
��U − 2�s

4
−

t2

	
̃	� . �45�

This term varies as 	
̃	−1 down to the low-energy cutoff at
	
̃	�4t2 /U, and makes the dominant contribution to the
shape of the ZBA. The cutoff comes from the boundary be-
tween the region BA and the region BB in Fig. 6, where the
approximate one- and two-electron wave functions used in
deriving ��E� cease to be valid.

In our calculations, Eq. �45� comes from transitions be-
tween one- or three-electron ground states, and two-electron
triplet excitations. For the three-electron ground state, for
example, these excitations have the form

	↑2�→
c2↓

	↑↑�, 	↑2�→
c2↑

	t� . �46�

As mentioned above, the three-electron energies are nearly
independent of t; the triplet energies are also independent of
t, however, so that the transition energies are not shifted by
level repulsion. The mechanism for depleting the low-energy
density of states in this term is therefore not that of Altshuler
and Aronov.

Instead, it is the fact that a gap in the triplet spectrum
opens as t increases that causes a depletion of states near �F
�this gap was illustrated in Fig. 2�. This gap occurs for con-
figurations of ��1 ,�2� that have one- or three-electron ground
states in the atomic limit but two-electron ground states
when t is nonzero. For example, when �1 and �2+U both lie
slightly below �F, the atomic-limit ground state has three
electrons and triplet excitations as in Eq. �46� are possible.
When t is nonzero, the two-electron ground-state energy E−
is reduced by O�t� while the three electron ground-state en-
ergy is reduced by O�t2 /U�. For sufficiently large t, the two-
electron ground state has the lower energy and the triplet
excitation is eliminated �i.e., the only possible tunneling pro-
cesses are to one- or three-electron final states�. In summary,
the ZBA in the final term of Eq. �40� occurs because the
phase space for low-energy triplet excitations is reduced
when t increases.

As we discus elsewhere,5,11 this calculation sheds light on
the empirical observation, made for larger systems, that the
width of the ZBA is of order t.2 A naïve argument based on
the disorder-free Hubbard model would suggest that the ZBA
might have a conventional Altshuler-Aronov form, but with
an effective exchange interaction Veff=4t2 /U, so that the
ZBA should grow with increasing t2 /U. As we have said

above, there are contributions to the density of states of this
type; however, we have just shown that a much larger effect,
of order t, comes from configurations with the LHO and
UHO on neighboring sites degenerate.

We note that this explanation appears to contradict nu-
merical evidence from the work of Chiesa et al.2 on two-
dimensional clusters that a large ZBA persists far from half
filling and for large U since configurations with a degenerate
LHO and UHO do not occur in these cases; as we have
shown in Fig. 5, the ZBA vanishes rapidly �with increasing
disorder� in the two-site model when �F is outside the central
plateau. To check this, we have performed preliminary exact-
diagonalization calculations for larger clusters �up to 12
sites�. These calculations find that the width of the ZBA is
not linear in t when �F is outside the central plateau, and
suggest that the physics of the ZBA changes far from half
filling. A more detailed study of how the ZBA evolves with
doping needs to be undertaken.

V. CONCLUSIONS

In summary, we have found that the zero bias anomaly in
the two-site Anderson-Hubbard model is the result of strong
orbital hybridization in the two-electron ground state for
configurations with �1��2+U��F or with �2��1+U��F.
Unlike in the conventional Hubbard model, this hybridiza-
tion is not suppressed by the on-site interaction U, and leads
to a level repulsion between molecular orbital energies of
order t, rather than t2 /U.

The mechanism for the suppression of the tunneling den-
sity of states is, at least in part, different from in conven-
tional mean-field models of interacting electrons. In mean-
field theories, interactions cause a shift of molecular-orbital
energies away from �F that leads directly to an increase in
the energy required to remove or add an electron. This also
occurs in the Anderson-Hubbard model; however, there is an
additional depletion of low-energy spectral weight because
the low-energy triplet excitation spectrum is gapped as a re-
sult of orbital hybridization. This mechanism is physically
different from that of Altshuler and Aronov.
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